Paper accepted in Elsevier Ad Hoc Networks Journal

Our paper entitled “Drone Networks: Communications, Coordination, and Sensing” is accepted for publication in Ad Hoc Networks Journal.

In this paper, we describe a high-level architecture for the design of a collaborative aerial system consisting of drones with on-board sensors and embedded processing, sensing, coordination, and communication and networking capabilities. We implement a multi-drone system consisting of quadcopters and demonstrate its potential in disaster assistance and area monitoring scenarios. Furthermore, we illustrate design challenges and present potential solutions based on the lessons learned so far.

Supporting First Response Personnel with Autonomous Drones

Our research at Klagenfurt focuses on many civil applications of drones. The following video illustrates the functionalities we can enable on quadrotor platforms tailored for disaster response. Specifically, we show multi-drone coordination supporting aerial surveillance, target detection, video streaming, delivery, navigation under forest canopy and human-drone interaction.

Dronehub K

Dronehub K is our new portal for UAV/drone related activities at University of Klagenfurt and Lakeside Labs GmbH.

You can find information on our current and previous projects and our publications, in addition to posts from guest researchers.

Paper accepted in ICRA 2017

Our paper entitled “Multi-Objective UAV Path Planning for Search and Rescue” is accepted for publication in IEEE ICRA 2017.

We propose a multi-objective optimization algorithm to allocate tasks and plan paths for a team of UAVs. Our genetic algorithm approach aims to minimize the mission completion time, which includes the time to find the target (area coverage) and the time to setup a communication path (network connectivity). We evaluate strategies using a data mule, a relay chain, and a novel hybrid approach to communicate with the ground personnel. The algorithm can be tuned to prioritize coverage or connectivity, depending on
the mission demands.

Survey accepted in IEEE Communications Surveys and Tutorials

Our survey entitled “Survey on Unmanned Aerial Vehicle Networks for Civil Applications: A Communications Viewpoint” is accepted in IEEE Communications Surveys and Tutorials.

This comprehensive survey reports the characteristics and requirements of UAV networks for envisioned civil applications over the period 2000–2015 from a communications and networking viewpoint. We survey and quantify quality-of service requirements, network-relevant mission parameters, data requirements, and the minimum data to be transmitted over the network. Furthermore, we elaborate on general networking related requirements such as connectivity, adaptability, safety, privacy, security, and scalability. We also report experimental results from many projects and investigate the suitability of existing communication technologies for supporting reliable aerial networking.

 

Paper accepted in ACM MobiSys Workshop-DroNet 2015

Our paper “An Autonomous Multi-UAV System for Search and Rescue,” is accepted in ACM MobiSys Workshop DroNet 2015 (Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use).

This paper proposes and evaluates the modular architecture of the autonomous unmanned aerial vehicle (UAV) system for search and rescue missions demonstrated here. The system is implemented in the Robot Operating System (ROS) and is capable of providing a real-time video stream from a UAV to one or more base stations using a wireless communications infrastructure. The system supports a heterogeneous set of UAVs and camera sensors.

Paper accepted in IEEE Transactions on Control of Network Systems

Our paper “Information Exchange and Decision Making in Micro Aerial Vehicle Networks for Cooperative Search,” is accepted for publication in accepted in IEEE Transactions on Control of Network Systems.

The article considers a network of autonomous micro aerial vehicles (MAVs) cooperatively searching for multiple stationary targets, with the objective to minimize the search time while considering sensing and communication limitations. We explore and classify the design options in multi-MAV cooperative search in two dimensions: information merging and decision making where each dimension can be either centralized or distributed. Algorithms are then introduced to analyze the effects of centralized or distributed coordination for minimizing the search time. We show that depending on the availability of information and capability of making decisions, the MAVs can search an area more efficiently if both information merging and decision making are distributed.

Invited Talk at AETOS

I was invited to give a talk at the 2nd AETOS international conference on “Research challenges for future RPAS/UAV systems“. The conference took place in Bordeaux, France, 9-10 September 2014 co-located with UAV Show 2014.
My talk was entitled “Communication and Cooperation in Multi-UAV Networks”, where I talked about our work on multi-UAV systems for civil applications, treating the multi-UAV system as a network of nodes that cooperate toward a common goal such as area coverage or search and rescue, where the team behavior is enabled via communication between the UAVs. Especially, I focused on planning in multi-UAV systems and evaluation of networking behavior via real-world experiments. Slides of my talk are available on request.